生活 x Mn 1x PO 4/C composites 被综合由一固态用是的酉分的树脂的反应线路两个减少代理人和碳来源。在 crystallinity 和生活 x Mn 1x PO 4/C 被调查。试验性的结果证明为 Mn 2+ 的 Fe 2+ 替换将导致生活 x Mn 1x PO 4/C 粒子由于 Fe 2+ 的更小的离子的半径。在做的调查 Fe 变化( x = 0~0.7 ),生活 x Mn 1x PO 4/C ( x = 0.4 )当时, composites 在 0.1 C 展出了 148.8 mAh/g 的一个最大的分泌物能力生活 x Mn 1x PO 4/C ( x = 0.7 )合成与一个能力显示出最好的周期能力在 30 以后的99.0%的保留比率在 0.2 C 骑车。相反,生活 x Mn 1x PO 4/C ( x = 0.5 )分泌物能力上的合成执行更好的交易和能力保留比率, 127.2 mAh/g 并且94.7%在在 0.2 C 的开始的 30 个周期以后,分别地它是为实际应用比较喜欢的更多。
LiFe Mn1-xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance of LiFexMnt xPOJC was investigated. The experimental results show that the Fe2+ substitution for Mn2+ will lead to crystal lattice shrinkage of LiFe Mn1-xPO4/C particles due to the smaller ionic radii of Fe2+ In the investigated Fe doping range (x = 0 to 0.7), LiFe Mn1-xPO4/C (x = 0.4) composites exhibited a maximum discharge capacity of 148.8 mAh/g at 0.1 C while LiF%MnI_xPO4/C (x = 0.7) composite showed the best cycle capability with a capacity retention ratio of 99.0% after 30 cycles at 0.2 C. On the contrary, the LiFe Mnl-xPO4/ C (x = 0.5) composite performed better trade-off on discharge capacity and capacity retention ratio, 127.2 mAh/ g and 94.7% after the first 30 cycles at 0.2 C, respectively, which is more preferred for practical applications.