位置:成果数据库 > 期刊 > 期刊详情页
基于手机信令数据的快递人员辨识方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:U461[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程]
  • 作者机构:[1]北京工业大学北京市交通工程重点实验室,北京100124, [2]交通运输部公路科学研究院,北京100088
  • 相关基金:北京市自然科学基金资助项目(8131001);湖北省交通运输厅科技项目(2014721311)
中文摘要:

提出一种基于朴素贝叶斯分类法(naive Bayesian classifier,NBC)的城市快递人员辨识方法.首先,通过相关问卷调查,研究快递派送人员的手机信令发生规则.然后,依据北京市移动用户手机通信信令数据,利用问卷调查数据和手机信令数据2种数据源中同时包含的通信数据属性,建立通信数据与调查数据中类别变量(快递人员/非快递人员)之间的贝叶斯概率关系,以此为基础构建NBC模型并对其进行训练.最后,使用未参与训练的样本数据测试标定后模型的准确性,测试结果显示快递人员的预测成功率达到88.3%.结果表明:该方法具有较高的精度,可以满足实际应用需求.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924