位置:成果数据库 > 期刊 > 期刊详情页
利用小波域HMC模型进行遥感图像变化检测
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安电子科技大学智能感知与图像理解教育部重点实验室,陕西西安710071, [2]中国航天科技集团771研究所,陕西西安710054
  • 相关基金:国家自然科学基金资助项目(61072106,60803097,60972148,60971128,60970066,61003198,61001206,61050110144);国家教育部博士点基金资助项目(200807010003);高等学校学科创新引智计划(111计划)资助项目(B07048);国家部委科技资助项目(9140A07011810DZ0107,9140A07021010DZ0131);中央高校基本科研业务费专项资金资助项目(JY10000902001,K50510020001,JY10000902045)
中文摘要:

传统阈值检测算法都是基于单函数模型进行的,当差异影像分布函数较复杂时检测结果较差.针对这个问题,提出一种基于小波域的隐马尔科夫链模型的遥感图像变化检测算法.将双高斯混合模型与小波变换结合,解决了单函数模型匹配率低的问题,并通过小波变换引入了图像的空间信息,提高了检测精度.利用双高斯混合模型对小波分解后的多层差异影像进行拟合,根据拟合结果判定待检测点类别.对得到的多层初始分割结果,利用隐马尔科夫链模型根据连续最大后验概率融合,得到最终变化检测图.对真实遥感数据集进行实验,证明这种算法可以得到较好的检测结果.

英文摘要:

The traditional threshold algorithms detect the changes in multitemporal remote sensing images based on the analysis of the signal function model, which has a poor accuracy for difference images with complex distribution. In this paper, a new approach is proposed by virtue of the double Gaussian mixture model and the wavelet transform. The proposed algorithm has better matching than the signal function model and introduces the spatial information by using the wavelet transform. After using the double Gaussian mixture models to detect the changed regions, the change maps in different scales are fused using the HMC model based on sequential maximum a posteriori estimation. The experiments on the real remote sensing images confirm the effectiveness of the proposed algorithm.

同期刊论文项目
期刊论文 37 会议论文 14 获奖 4 著作 1
期刊论文 41 会议论文 3 专利 11
期刊论文 43 会议论文 17 专利 12
期刊论文 41 会议论文 6 获奖 4 专利 9
期刊论文 31 会议论文 10 获奖 2 专利 3
期刊论文 33 会议论文 9 获奖 1 专利 30
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591