对具有不连续系数的散度型椭圆方程-(αijuxi)xj=(fj)xj的解在Morrey空间中的细正则性进行了研究,即如果αij∈VMO∩L^∞(Ω),fj∈L^p,λ(Ω),u∈W^1,q(Ω)(1〈q≤p)是方程的解,则u∈Wloc^1,p(Ω)且uxj∈Lloc^p,λ(Ω).
This paper studies the fine regularity of the solutions in Morrey spaces for the elliptic equation in divergence form: -(αijuxi)xj = (fj)xj. i.e. if αij∈VMO ∩ L^∞(Ω), f ∈ L^p,λ(Ω), u ∈ W^1,q(Ω) (1 〈 q ≤ p) is the solution of the equation, then u ∈ Wloc^1,p (Ω) and uxj∈ Lloc^p,λ (Ω).