位置:成果数据库 > 期刊 > 期刊详情页
基于模糊聚类SVM的混合像元分类方法
  • ISSN号:1671-5489
  • 期刊名称:《吉林大学学报:理学版》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]吉林财经大学管理科学与信息工程学院,长春130117
  • 相关基金:国家自然科学基金(批准号:61202306); 吉林省科技发展计划项目(批准号:20130522177JH)
中文摘要:

针对遥感影像分类过程中混合像元难判别的问题,提出一种基于Gustafson-Kessel模糊聚类算法的支持向量机(SVM)分类模型.以Gustafson-Kessel算法优选训练样本方式提高支持向量机的分类性能.为验证其有效性,将该模型应用于森林覆盖类别分类,并与标准支持向量机模型分类结果对比.实验结果表明,该方法能提高支持向量机对混合像元划分的精度.

英文摘要:

In view of a lot of mixed image pixels contained in remote sensing images classification, fuzzy clustering support vector machine (SVM) was introduced to deal with the remote sensing images unmixing. In the proposed technique, Gustafson-Kessel is used to select the useful sample points for improving the classification performance of support vector machine. The effectiveness of the proposed method was evaluated through the forest cover remote sensing classification. The experiment shows that the accuracy of mixed pixels classification can be increased by applying the learning scheme, compared with that of traditional SVM classification method.

同期刊论文项目
期刊论文 18 会议论文 11 获奖 4 著作 1
同项目期刊论文
期刊信息
  • 《吉林大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:吉林大学
  • 主编:裘式纶
  • 地址:长春市南湖大路5372号
  • 邮编:130012
  • 邮箱:sejuj@mail.jlu.edu.cn
  • 电话:0431-88499428
  • 国际标准刊号:ISSN:1671-5489
  • 国内统一刊号:ISSN:22-1340/O
  • 邮发代号:12-19
  • 获奖情况:
  • 在吉林省、教育部及全国优秀科技期刊评比中共获奖1...,2008年被评为"中国精品科技期刊", 并获教育部"第...,2009年获全国高校科技期刊优秀编辑质量奖,并被吉...,2008年和2009年连续两次获"中国科技论文在线优秀期...,2010年获教育部"第三届中国高校优秀科技期刊"奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6314