位置:成果数据库 > 期刊 > 期刊详情页
工业 PX 氧化过程4-CBA 含量的软测量
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京邮电大学自动化学院,江苏南京210003, [2]河南省轻工业学校,河南郑州450006
  • 相关基金:国家自然科学基金项目(61203213,11202107)
中文摘要:

针对传统最小二乘支持向量机非稀疏化解问题,提出了基于遗传算法的最小二乘支持向量机稀疏化及参数优化方法,稀疏化的基本思想是给训练样本赋予一个概率值,将概率值小于0.5的样本作为测试样本,从而将总的训练样本集分成测试样本集和保留的训练样本集。定义了包括稀疏率、训练误差及测试误差在内的适应度函数。种群个体的前N维表示每个样本对应的概率,后m维表示要优化的参数。通过选择、交叉和变异操作对所有参数进行整体优化,取适应度最小的个体对应的保留的训练样本及优化参数建立最小二乘支持向量机模型。并用该方法用于PX氧化过程4-CBA含量的软测量中,工业数据仿真结果表明,用本文提出的方法稀疏化率达到87%,核参数选取自动完成,与稀疏前建立的模型相比推广能力更高。

英文摘要:

The traditional least squares support vector machine(LSSVM) is generally used to solve non-sparse problems. A sparse and parameter optimization method of LSSVM based on genetic algorithm was proposed. The basic idea of sparse was to give a probability value to each training sample, and if its probability value was less than 0.5 then the corresponding training sample was not a support vector. Samples that was not support vectors were treated as test samples. So, the set of total training samples was divided into the set of test samples and the set of training sample remained. A fitness function including sparse rate, training error and test error was defined. The first N dimensions of the population individual specified corresponding probability of each sample, the next m dimensions specified parameters to be optimized. All parameters including probabilities were optimized globally by mutation, selection, and crossover operations. A model of LSSVM was established by using the corresponding training sample remained and optimized parameters of the individuals with minimum fitness. The proposed method was applied to the soft sensor of 4-CBA concentration in the PX oxidation process. Simulation results with industrial data showed that by using the proposed method sparse rate was up to 87%, kernel parameters were identified automatically, and the sparse model had better generalization capability than that of the model before sparse.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960