位置:成果数据库 > 期刊 > 期刊详情页
基于机器学习的烟雾检测算法去除固定干扰
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP274.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]桂林电子科技大学计算机科学与控制学院,广西桂林541004
  • 相关基金:国家自然科学基金资助项目(61063040);广西研究生教育刨新计划资助项目(YCSZ2013068).
中文摘要:

烟雾是早期火灾最为突出的视觉表现,因此检测火灾烟雾在日常防火应用中具有重要的意义;针对目前视频烟雾检测算法中误报率高,适应性差等特点,在实施基本烟雾检测算法并在其基础上提出基于机器学习的视频烟雾去干扰方法,能很大程度上去除固定干扰物的干扰,提高了烟雾识别的正确率;实验证明,该算法可以较好、较快地检测出烟雾,并做出早期的预警工作,且具有检测精确等优点,很方便在现实中推广使用.

英文摘要:

Smoke is the most prominent of the fire detect, so detect the smoke has an important significance in daily lives. In view of the current smoke detection has the high error rate and poor adaptability. Therefore, this paper presents Remove the fix interference which based on machine learning in the smoke detection and it can remove the fixed interference as soon as possible, and it can improve the correct rate of smoke recognition. Experiments show that the algorithm has a high speed and good effect on the smoke detection and make the early alarm work, And has accurate detection etc, so it' s convenient to be widely used in reality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924