位置:成果数据库 > 期刊 > 期刊详情页
多重测量矢量模型下的稀疏步进频率SAR成像算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN957.52[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]空军工程大学信息与导航学院,西安710077, [2]复旦大学电磁波信息科学教育部重点实验室,上海200433
  • 相关基金:国家973计划项目(2010CB731905)和国家自然科学基金(61172169)资助课题
中文摘要:

基于压缩感知(pressed ensing,cS)的合成孔径雷达(SAR)成像算法可以用低于Nyquist采样率的采样数据完成稀疏目标高分辨成像。然而已有的算法在重构1维距离像时采用的大都是单重测量矢量(Single Measurement Vectors,SMV)模型,存在着重构耗时长、受噪声干扰大的缺点。该文从压缩感知的多重测量矢量(Multiple Measurement Vectors,MMV)模型出发,利用多重测量矢量恢复具有相同稀疏结构的联合稀疏目标信号源,从理论与实验角度分析了基于MMV模型的SAR1维距离像成像性能,提出了一种距离向基于MMV模型,方位向基于SMV模型的2维SAR成像算法。该算法从耗时上、重构精度上均优于SMV模型下的CS成像算法。通过对仿真数据和地基雷达实测数据的处理,验证了算法的有效性。

英文摘要:

The SAR imaging algorithm based on Compressed Sensing (CS), could complete the high-resolution imaging of sparse target with the sampling data below the Nyquist sampling rate. However, the Single Measurement Vectors (SMV) model used for range profile reconstruction in existing algorithms, is time-consuming and noise-affected. Based on the Multiple Measurement Vectors (MMV) model, this paper proposes to recovery the joint sparse target signal source of the same sparse structure by MMV. The range profile imaging performance is analyzed theoretically and experimentally. Then, a 2-D SAR imaging algorithm, in which the range imaging is realized based on MMV model and azimuth imaging is realized based on SMV model, is proposed. This algorithm is superior to the SMV-hased CS algorithm both on of simulation data and radar measured data verifies time-consuming and reconstruction precision. The processing the effectiveness of this algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739