位置:成果数据库 > 期刊 > 期刊详情页
一种新的求解零空间线性鉴别分析的快速算法
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TN912.3[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]苏州大学物理与光电·能源学部,苏州215006, [2]东南大学信息科学与工程学院,南京210096
  • 相关基金:The National Natural Science Foundation of China (No. 61231002, 61273266, 51075068, 61271359), Doctoral Fund of Ministry of Education of China (No. 20110092130004).
中文摘要:

提出了一种基于级联投影的高斯混合模型算法。首先,针对不同的特征维度计算高斯混合模型的边缘概率,依据边缘概率模型构造出多个子分类器,每个子分类器包含不同的特征组合。采用级联结构的框架对子分类器进行动态融合,从而获得对样本的自适应能力。其次,在心电情感信号和语音情感信号上验证了算法的有效性,通过实验诱发手段,采集了烦躁、喜悦、悲伤等情感数据。最后,探讨了情感特征参数(心率变异性、心电混沌特征,语句级静态特征等)的提取方法。研究了情感特征的降维方法,包括主分量分析、顺序特征选择、Fisher 区分度和最大信息系数等方法。实验结果显示,所提算法能够在2种不同的场景中有效地提高情感识别的准确率。

英文摘要:

A cascaded projection of the Gaussian mixture model algorithm is proposed.First,the marginal distribution of the Gaussian mixture model is computed for different feature dimensions, and a number of sub-classifiers are generated using the marginal distribution model.Each sub-classifier is based on different feature sets.The cascaded structure is adopted to fuse the sub-classifiers dynamically to achieve sample adaptation ability.Secondly,the effectiveness of the proposed algorithm is verified on electrocardiogram emotional signal and speech emotional signal.Emotional data including fidgetiness,happiness and sadness is collected by induction experiments.Finally,the emotion feature extraction method is discussed,including heart rate variability, the chaotic electrocardiogram feature and utterance level static feature.The emotional feature reduction methods are studied, including principle component analysis,sequential forward selection, the Fisher discriminant ratio and maximal information coefficient.The experimental results show that the proposed classification algorithm can effectively improve recognition accuracy in two different scenarios.

同期刊论文项目
期刊论文 12 会议论文 6 获奖 2 专利 6
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003