位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络及数据融合的管道缺陷定量识别
  • ISSN号:1000-6656
  • 期刊名称:《无损检测》
  • 时间:0
  • 分类:TG115.28[金属学及工艺—物理冶金;金属学及工艺—金属学]
  • 作者机构:[1]沈阳工业大学信息学院,沈阳110023
  • 相关基金:国家自然科学基金资助项目(60327001)
中文摘要:

分析了管道缺陷的特征参数与漏磁信号的关系,研究显示管道缺陷的深度和长度分别与漏磁信号的幅值和宽度呈近似线性关系。将实际漏磁信号预处理以消除传感器提离值不同带来的影响,然后用已训练好的BP神经网络进行了管道缺陷的定量识别,识别结果的误差〈10%,完全满足实际检测要求。分别用加权平均和自适应加权平均两种方法将轴向和径向漏磁信号进行信号级融合,融合后基于BP神经网络的缺陷定量识别的精度和可靠性得到了明显提高,其中加权平均法更优。

英文摘要:

Quantitative recognition of defect was the difficulty in pipeline magnetic flux leakage (MFL)inspection. The relationship between pipeline defects and MFL signals were studied. The study showed that the depth and length of the defects had an approximately linear relation to the amplitude and width of MFL signals respectively. The real MFL signals were preprocessed to eliminate the effects of sensor lift-off and then were recognized quantitatively by BP neural network already trained. The recognition result error was less than 10%, and practical inspection requirement was completely fulfilled. In order to get better recognition result, the axial and radial MFL signal were fused at signal level by weighted average and adaptive weighted average methods respectively. The accuracy and reliability of quantitative recognition based on BP neural network were improved remarkably after signal fusion. The results showed that the weighted average method was better than the adaptive weighted average method.

同期刊论文项目
期刊论文 15 会议论文 18 获奖 3
同项目期刊论文
期刊信息
  • 《无损检测》
  • 北大核心期刊(2004版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会 上海材料研究所
  • 主编:耿荣生
  • 地址:上海市邯郸路99号
  • 邮编:200437
  • 邮箱:ndt@mat-test.com
  • 电话:021-65556775-225
  • 国际标准刊号:ISSN:1000-6656
  • 国内统一刊号:ISSN:31-1335/TG
  • 邮发代号:4-237
  • 获奖情况:
  • 中国科协优秀期刊,国家机械行业优秀期刊奖,上海市优秀期刊奖,全国中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版)
  • 被引量:8442