如何对三维模型进行特征提取是近年来出现的三维模型检索中的主要问题.文章给出了一种基于视点距离的特征提取算法,该算法利用正规化后的三维模型表面到观察点的距离信息生成六幅距离图像,然后对图像进行二维傅立叶变换并对变换后的频域信息进行低频采样从而得到三维模型的特征向量.该算法克服了基于三维投影的二维图像轮廓算法中丢失模型空域信息、缺乏对图像内部信息进行描述的缺点.实验结果表明,该算法比基于轮廓算法的检索精确度提高了19%.
In 3D model retrieval ,there is a major concern about how to extract features from 3D models. This paper introduces a new feature extraction algorithm based on view distance. This algorithm uses information about distance between normalized model face and the view point to generate six distance image,and then it exploits 2D Fourier transform to obtain 3D model feature vector. This method overcomes the drawbacks of the 3D projection-based silhouette algorithm concerning information lost in space and image interior. The experiment shows that the new algorithm is much better than the silhouette algorithm in retrieval precision.