数值流形方法(Numerical Manifold Method,简称NMM)中特有的两套覆盖系统(数学覆盖系统和物理覆盖系统)使得其在分析问题时可采用与物理域边界不一致的数学覆盖系统。发展了用于研究功能梯度材料(FGM)二维稳态热传导问题的NMM。给出了控制方程和边界条件,介绍了NMM的基本概念,导出了NMM的离散方程,探讨了相关矩阵的求积策略,选取了两个典型算例对方法的可行性和精确性进行了验证,结果表明该方法可以很好地模拟FGM稳态热传导问题。