位置:成果数据库 > 期刊 > 期刊详情页
Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution
  • ISSN号:0253-9837
  • 期刊名称:《催化学报》
  • 时间:0
  • 分类:O[理学]
  • 作者机构:[1]Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China, [2]Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 相关基金:Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 21431003 and 21521091) and China Ministry of Science and Technology (No. 2016YFA0202801). We also thank Dr. Lina Zhang and Ms. Xiaohua Gu for their kind help with the TEM measurements.
中文摘要:

Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous defect-rich O-incorporated {0001} MoS2 ultrathin nanosheets (NSs), and {112?0}-facet surrounded CdS NW stems are grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g-1·h-1 and a quantum yield of 22.0% at λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.

英文摘要:

Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous_ defect-rich O-incorporated {0001} MoS2 facet surrounded CdS NW stems are ultrathin nanosheets (NSs), and {1120}- grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g^-1·h^-1 and a quantum yield of 22.0% at ,λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《催化学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国化学会 中国科学院大连化学物理研究所
  • 主编:李灿 张涛
  • 地址:大连市沙河口区中山路457号
  • 邮编:116023
  • 邮箱:chxb@dicp.ac.cn
  • 电话:0411-84379240
  • 国际标准刊号:ISSN:0253-9837
  • 国内统一刊号:ISSN:21-1195/O6
  • 邮发代号:8-93
  • 获奖情况:
  • 第三届国家期刊奖提名奖,中国科协精品科技期刊示范项目
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:19199