位置:成果数据库 > 期刊 > 期刊详情页
元胞驻留视频群体状态预报方法
  • ISSN号:0367-6234
  • 期刊名称:哈尔滨工业大学学报
  • 时间:2014.9
  • 页码:682-687
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61171184,61201309)
  • 相关项目:监控视频中大规模群体系统模型及其演进-预报方法研究
中文摘要:

视频场景人群状态预报是防止公共场所安全事故的一种重要措施.为此提出了一种视频场景群体状态预报模型.该模型使用格内驻留元胞自动机(inner-grid parking cellular automata,IPCA)模型预报视频中群体状态.首先,通过光流法进行运动跟踪作为IPCA的输入特征对场景进行建模,并根据特征点的运动状态自适应地调整其在元胞格内的驻留时间以提高预报精度;其次,通过分析IPCA模型的预测结果判断群体微团间的相互作用得到视频帧的状态信息,从而达到对场景中人群状态进行预报的目的;最后,利用当前场景的状态信息对该场景的预报输出进行反馈校正,使模型能够及时地反映场景中群体状态的变化,该模型不依赖于具体的视频帧,以微团结构的碰撞作为异常检测依据.实验结果表明,与传统的检测方法相比,该预报模型能够提前预报视频场景中的异常状态,并具有较好的准确性.

英文摘要:

Forecasting pedestrian states with the help of video analysis is a significant mean to prevent accidents in public places.An improved Inner-grid Parking Cellular Automata( IPCA) model is proposed to forecast pedestrian state.Motion tracking and scenario modeling are firstly achieved by optical flow method,and then motion states of pedestrian are used to adjust parking time in cellular adaptively to improve forecasting accuracy.Here,the state of an incoming video frame is acquired by analyzing the interaction between micelles,which is provided by the forecasting result of IPCA.After that,a feedback algorithm is employed to revise the forecasting result so that the model could reflect precisely the change of pedestrian state in the scenario.A criterion is also proposed to judge the abnormal state of a video frame,which is collision between two micelles.Compared to other traditional detection methods,IPCA based model has a good ability in predicting the abnormal state ahead of time and obtaining better accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329