位置:成果数据库 > 期刊 > 期刊详情页
可识别单一核苷酸错配的微悬臂基因检测技术力学模型
  • ISSN号:0455-2059
  • 期刊名称:《兰州大学学报:自然科学版》
  • 时间:0
  • 分类:O322[理学—一般力学与力学基础;理学—力学]
  • 作者机构:西部灾害与环境力学教育部重点实验室,兰州大学土木工程与力学学院,兰州730000
  • 相关基金:国家自然科学基金项目(11502103,11421062和11472119)资助
中文摘要:

小波分析是近几十年来发展起来的重要数学分支,被誉为"数学显微镜",其独具的多分辨分析和大量可供选择的,可兼具正交性、紧支性、对称性、低通滤波、线性相位及插值性等优良数学品质的小波基函数为强非线性微分方程的数值求解带来了新的契机.自上世纪90年代以来,诸如小波伽辽金法、小波配点法、小波有限单元法和小波边界单元法等数值方法被先后构建出来并成功应用于各类力学问题的定量研究之中.论文从小波提出的历史背景及作为其理论基础的多分辨分析出发,对现有基于小波理论的各类数值方法进行梳理,总结各自的优点、缺点和下一步可能的发展方向,为未来基于小波理论的定量分析方法的发展及其在复杂非线性力学问题中的应用研究提供参考.

英文摘要:

Wavelet analysis is a mathematical branch developed in the pastseveral decades,which is known as the so-called‘numerical microscope'.Wavelets have the unique mathematical property of multiresolution analysis.When using wavelet and scaling functions as basis,they have excellent mathematical characteristics of orthogonality,compactness,symmetry,low-pass filter,approximate linear phase and interpolation,etc.These properties have brought new opportunities to developing advanced numerical techniques on accurately and efficiently solving differential equations in nonlinear mechanics problems.Since the 1990s,numerical methods such as the wavelet Galerkin method,wavelet collocation method,wavelet finite element method,wavelet boundary element method,etc.have been constructed and successfully applied to the quantitative research of mechanical problems.Most importantly,wavelet analysis provides a totally new way to develop robust and adaptive methods for efficiently solving mechanical problems with large local gradients,and to propose closure algorithms to uniformly solving problems with strong nonlinearity.Problems with these two types of features are usually very difficult to deal with by using most traditional methods.Starting from the review of historical background and theory of multiresolution analysis,this review systematically discusses how specific mathematical properties of wavelets can merit high efficiency and accuracy of the wavelet-based method,and why the Coiflet-based method is a good choice in developing advanced numerical algorithms for solving nonlinear differential equations.Also,this paper analyzes the existing numerical methods related to wavelets and summarizes the advantages,disadvantages and possible development directions of wavelet-based methods.Especially,this paper discusses the closed-form numerical algorithm based on the Coiflet-type wavelets for solving nonlinear mechanical problems in detail.An example on the shallow water equation demonstrates that such a method has the ability to capt

同期刊论文项目
同项目期刊论文
期刊信息
  • 《兰州大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:兰州大学
  • 主编:涂永强
  • 地址:兰州市天水南路222号
  • 邮编:730000
  • 邮箱:jns@lzu.edu.cn
  • 电话:0931-8912707
  • 国际标准刊号:ISSN:0455-2059
  • 国内统一刊号:ISSN:62-1075/N
  • 邮发代号:54-3
  • 获奖情况:
  • 全国自然科学类核心期刊,甘肃省优秀科技期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:12892