本文考虑一维空间中四阶抛物型方程Cauchy问题{u(x,0)=u0(x),ut=эx^2u+эx^4u=эxf(u),x∈R,x∈R,t〉0,的整体解u=U(x,t)的大时间渐近行为和时间衰减速率,其中f(u)∈C^1(R),|f(u)|≤C|u|^q,q〉2^-5.
In this paper, we consider the large time behavior and the time-decay rate of global solutions to the Cauchy problem of fourth order parabolic equation in one dimension space:{u(x,0)=u0(x),ut=эx^2u+эx^4u=эxf(u),x∈R,x∈R,t〉0,with f(u)satisfying f(u)∈C^1(R),|f(u)|≤C|u|^q,q〉2^-5.