【目的】稻瘟病菌(Magnaporthe oryzae)引起的水稻稻瘟病是威胁全球水稻生产的重要病害之一,而该菌附着胞介导的侵染又是病害循环的重要环节。在前期的研究中发现一个编码C_2H_2锌指结构的转录因子基因ZNF1,参与稻瘟病菌附着胞形成、穿透和致病过程,论文旨在从转录水平上了解受Znf1调控的基因及其调控机理,为深入研究稻瘟病菌致病分子机理提供基础数据。【方法】利用RNA-Seq技术对稻瘟病菌野生型菌株Guy11和突变体Δznf1的营养菌丝体进行表达谱测序,采用FPKM法计算基因表达量,以FDR≤0.001且log2 ratio(Δznf1/Guy11)≥1为筛选标准,获得Δznf1中差异表达基因(differentially expressed genes,DEGs);通过与Gene Ontology(GO)数据库和KEGG Pathway数据库比对,获得差异基因可能的生物学功能和参与的分子调控途径。为了更详细地研究受Znf1调控的基因,在同样的条件下,利用RNA-Seq技术对稻瘟病菌丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)编码基因PMK1的缺失突变体进行表达谱分析,通过对Δznf1和Δpmk1中的差异表达基因进行比较,筛选受Znf1和Pmk1共同调控的基因,并与前人的研究数据比较,分析获得在稻瘟病菌附着胞发育阶段上调表达但在Δznf1和Δpmk1中同时下调表达的基因。【结果】与野生型Guy11相比,Δznf1中共有709个差异表达基因,其中上调表达的有299个,下调表达的有410个;GO功能富集分析显示差异表达基因归类到生物学过程、细胞组分和分子功能上的基因数目分别有118、299和308个;KEGG Pathway富集分析显示,这些差异表达基因主要参与代谢途径、次生代谢物质生物合成、甘油磷脂代谢等。一些已知的稻瘟病菌致病相关基因,如LPP3、HOX7、PBS2、MPG1等,在Δznf1中表达水平下调。与Δpmk1中差异表达基因比较发现,Δznf1中约56%的差异表达基因同时也受Pmk1调控。其中,编码isotric
【Objective】Magnaporthe oryzae is the causal agent of rice blast, which is one of the most important disease threatening the production of cultivated rice worldwide. Appressorium-mediated penetration is a key step in the disease cycle of the fungus. Previously, it was reported that a C2H2 zinc finger transcription factor encoded by ZNF1 is essential for appressorium development, penetration and pathogenicity in the rice blast fungus. The objective of this study is to understand the regulatory mechanism of Znf1 and reveal the genes transcriptionally regulated by Znf1, thus providing new clues for further investigating molecular mechanism of pathogenicity in this fungus. 【Method】The transcriptome profiles of vegetative mycelia of the wild-type strain Guy11 and a Δznf1 mutant were assayed with the RNA-Seq technique. The gene expression levels were calculated using the FPKM method. The criteria of false discovery rate(FDR)≤0.001 and absolute value of log2 ratio≥1 were used to identify differentially expressed genes(DEGs). The sequences of the DEGs were subjected to BLAST queries against the gene ontology(GO) database and KEGG pathway database to predict their biological function and pathways. In order to define in more detail about the sub-set of genes regulated by Znf1, transcriptome profiles of a mutant lacking the PMK1 MAP kinase-encoding gene was also analyzed based on the RNA-Seq technique. To identify the genes regulated by both Znf1 and Pmk1, the DEGs between Δznf1 and Δpmk1 were compared. In addition, the genes highly expressed during appressorium formation but down-regulated in either Δznf1 or Δpmk1 were obtained by comparison with the previous transcriptional profile data. 【Result】 Totally, 709 DEGs in the Δznf1 mutant, including 299 up-regulated and 410 down-regulated genes, were identified by comparison with the wild-type strain Guy11. Gene ontology enrichment analysis showed that 118, 299 and 308 DEGs were classified into cellular component, molecular function and biologi