研究如下双调和椭圆型问题{△^2u=μu/|x|^α,x∈B u=δu/δv=0,x∈δB的特征值不等式,其中α∈[0,4],N〉α,B是单位球。对于该问题的前(m+1)个特征值,得到了显式和隐式两种估计。
We mainly investigate the inequalities for eigenvalues of the nonlinear biharmonic elliptic problem {△^2u=μu/|x|^α,x∈B u=δu/δv=0,x∈δB.Where α∈[0,4],N〉α,B is the unit ball. For the first (m+1)th eigenvalues, we get two evaluations respectively with implicit bound and explicit bound. And we also obtain the stronger inequalities for some low eigenvalues.