位置:成果数据库 > 期刊 > 期刊详情页
基于距离和密度的时间序列异常检测方法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东省工会管理干部学院,济南250100
  • 相关基金:国家基金重点项目子课题(No.60825304).
作者: 孙梅玉[1]
中文摘要:

在时间序列的GMBR表示的基础上,首次提出将基于距离和基于密度的时间序列检测方法结合,给出了时间序列模式异常的定义,并用“异常特征值”来衡量时间序列模式的异常程度。根据所提出的模式异常的定义,在强力搜索算法的基础之上提出了新的时间序列异常检测算法GMBR-DD(Grid Minimum BoundingRectangle-Discords Detect),该算法将基于距离和基于密度的异常检测方法结合,能够高效地发现时间序列中的异常模式。通过三组实验数据,对提出的异常时间序列定义和时间序列的异常检测算法进行了验证,实验结果表明所提出的时间序列异常检测算法能够有效地发现时间序列的异常变动,为决策提供了很好的平台和有力的工具。

英文摘要:

It proposes the definition of the discords detect of time series based on the representation of the GMBR (Grid Minimum Bounding Rectangle) and it is the first time to combine the distance measure method with density. It uses the "detect eigenvalue" to weigh the detect degree of the time series. Based on the proposed definition of the discords detect, it gives the new discords detect algorithm named GMBR-DD (Grid Minimum Bounding RectangleDiscords Detect). This algorithm can find the discords time series with high-effect. It validates the definition and the proposed algorithm through three groups of the data. The experimental results show that the algorithm can catch the discords time series and the definition is reasonable. So the production provides a very effect fiat roof and a powerful tool in data mining of time series.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887