首先介绍了对易空间中的Wigner函数和Moyal本征方程,然后从Moyal-Weyl乘法出发并利用Bopp变换,得到了非对易相空间中Wigner函数所服从的Moyal方程;最后以谐振子相干态为例,通过重新定义的升降算符得到了非对易相空间中谐振子相干态的Wigner函数.
Firstly this paper makes a brief review of the Moyal equation and Wigner Functions in commutative space.Then,the Moyal equation which the Wigner Functions support is introduced in Non-communacative phase space.Finally,by redefining the raising and lowering operator,Wigner functions for the coherent state of two-dimensional Harmonic oscillators are obtained.