高斯过程(GPS)是一种良好的贝叶斯分类方法和回归过程,也可应用于半监督聚类方面,就此提出了一个新的算法:使用稀疏高斯过程回归模型来解决半监督二元分类问题,它是基于支持向量回归(SVR)和最大空间聚类(MMC)的半监督分类方法,此算法简单且易于实现,不同于SVR算法的稀疏解决方案。另外,超参数的估计也不再使用复杂的交叉验证技术,利用稀疏高斯回归模型有助于提高算法的可扩展性:使用合成的和真实世界的数据集初步验证了该算法的有效性。
Gaussian Processes (GPS) are promising Bayesian methods for classification and regression problems.They have also been used for senti-supervised learning tasks.It is pointed out a new algorithm for solving semi-supervised binary classification problem using sparse GP regression(GPR) models.It is related to semi-supervised learning based on support vector regression(SVk) and maximum margin clustering. This algorithm is simple and easy to implement.lt gives a sparse solution unlike the SVR, based algorithm.Also,the hyperparameters are esti- mated without resorting to expensive cross-validation technique.Use of sparse GPR model helps in making the proposed algorithm scalable. Results on synthetic and real-world data sets demon-strate the efficacy of the new algorithm.