令G为有限群,S为G的非空有限子集,G关于S的双凯莱图BC(G,S)是一个二部图,其顶点集是G×{0,1},边集是{(g,0)(sg,1)|g∈G,s∈S}.若有完美匹配的连通图Γ至少有2n+2个顶点,且每一个大小为n的匹配都可以扩充为一个完美匹配,则称此完美匹配的连通图Γ是n-可扩的,并对二面体群的双凯莱的2-可扩性进行了刻画.
Let Gbe a finite group and Sa nonempty subset(possibly containing the identity element)of G.The biCayley graph BC(G,S)of G with respect to Sis defined as the bipartite graph with vertex set G×{0,1}and edge set{(g,0)(sg,1)|g∈G,s∈S}.A connected graphΓadmitting aperfect matching is called n-extendable wheneverΓhas at least 2n+2vertices,and every matching of size ncan be extended to a perfect matching ofΓ.The 2-extendable bi-Cayley graphs of dihedral groups are characterized.