位置:成果数据库 > 期刊 > 期刊详情页
双隶属度模糊粗糙支持向量机
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]兰州交通大学电子与信息工程学院,兰州730070
  • 相关基金:甘肃省自然基金(No.1308RJZA224);兰州交通大学青年基金资助项目(No.2011024)
中文摘要:

针对支持向量机方法处理不确定信息系统时存在的两个问题:一方面支持向量机训练对噪声样本敏感,另一方面支持向量机训练未考虑信息系统的不一致,利用模糊理论与粗糙集方法分别计算得到两种隶属度:模糊隶属度与粗糙隶属度,并将两种隶属度引入到标准支持向量机中得到一个新的支持向量机模型——双隶属度模糊粗糙支持向量机(DM-FRSVM)。分析该模型对于不确定问题的解决思路并进行对比研究,实验结果表明,在对于含有不确定信息的样本集进行分类时,DM-FRSVM表现出更好的推广性能。

英文摘要:

It is difficult for support vector machine to deal with uncertain information because SVM is not only sensitive to noises and outliers but also the inconsistence between conditional features and decision labels is not taken into account.In order to overcome the problem, two types of membership are introduced into standard support vector machine, one type of membership is computed by the distance between the training samples and their center as fuzzy membership, the other type of membership is computed by the distance between the training samples and the nearest training sample with different class label as rough membership. At last several comparative experiments are made to show the performance and the validity of the proposed approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887