位置:成果数据库 > 期刊 > 期刊详情页
生物缺失数据处理的贝叶斯模型研究
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北方民族大学计算机科学与工程学院,宁夏银川750021
  • 相关基金:国家自然科学基金(61070131)
中文摘要:

介绍了隐私保护数据挖掘方法的产生背景和意义,其次概括了现阶段国内外隐私保护数据挖掘算法的研究现状,并对当前隐私保护数据挖掘领域中已提出的算法按照数据挖掘的方法、数据源分布情况、隐私保护技术和隐私保护对象以及数据挖掘应用类型等方面进行分类,然后分别详细阐述了在集中式和分布式数据分布环境下,应用在隐私保护的关联规则挖掘、分类和聚类挖掘中的一些典型的技术和算法,总结出它们的优缺点,并对这些优缺点进行剖析和对比,最后指明了隐私保护数据挖掘算法在未来的整体发展方向。

英文摘要:

Introduce the background and the significance of the privacy-preserving data mining methods.Secondly,summarized the present research status of the privacy-preserving data mining algorithm at home and abroad,and these algorithms in this area has been proposed already are classified according to the data mining methods,original data distribution,privacy-preserving techniques,privacy protection and data mining application type.Thirdly,it elaborates some typical technologies and algorithms which are used to the type such as the privacy-preserving association rule mining,and the privacy-preserving classification mining,and also the privacy-preserving cluster mining on the environment of the centralized data and the distributed data respectively.Most importantly,it also summarizes their advantages and disadvantages and then analyses and contrasts them to highlight the future direction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909