位置:成果数据库 > 期刊 > 期刊详情页
基于近邻评分填补的协同过滤推荐算法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]过程优化与智能决策教育部重点实验室,合肥230009, [3]上海电力学院经济与管理学院,上海201300
  • 相关基金:国家自然科学基金资助项N(71271072);高等学校博士学科点专项科研基金资助项目(20110111110006);教育部人文社会科学研究青年基金资助项目(09YJC630055)
中文摘要:

评分数据的稀疏性影响协同过滤算法的推荐质量。为此,提出一种基于近邻评分填补的混合协同过滤推荐算法。对原始评分矩阵进行全局降维,在低维的主成分空间中计算用户相似性,减少算法复杂度。采用奇异值分解法对近邻评分缺失值进行填补,降低近邻评分的稀疏性。在MovieLens数据集上的实验结果表明,该算法具有较好的推荐效果。

英文摘要:

Data sparsity influences the recommendation quality of collaborative filtering algorithm. To address this problem, a new hybrid collaborative filtering algorithm based on neighbor rating imputation is proposed. The dimensions of original rating matrix are reduced by Principal Component Analysis(PCA), which can reduce the computational complexity. Singular Value Decomposition(SVD) is used to impute missing ratings of the neighbors, which can alleviate the data sparsity. Experiments are carried out on MovieLens dataset, and the results show that the algorithm has higher the recommendation efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139