分级的增加[n ] P 在椭圆形的曲线秘密成员系统是核和最费时间的操作。为了改进分级的增加,在这篇论文,我们用 Lopez 建议一个翻三倍的算法, Dahab 射影的坐标,在有 3 回答增加和 3 地 squarings 不到那在 Jacobian 射影的翻三倍算法。而且,我们印射 P 到 ϕ ε−1(P), 并且计算[n ] 比计算快的椭圆形的曲线 E ε, 上的 ϕ ε−1(P)[n ] E 上的 P,在此 ϕ ε 是同晶型。最后,我们计算 ϕ ε([n]ϕε−1(P))=[n ] P。与我们使公式增加两倍的有效的点结合了,这个方法导致用两倍底的分级的增加完成大约 23% 改进,与 Jacobian 射影的坐标相比。
Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and Dahab projective coordinates, in which there are 3 field multiplications and 3 field squarings less than that in the Jacobian projective tripling algorithm. Furthermore, we map P to(φε^-1(P), and compute [n](φε^-1(P) on elliptic curve Eε, which is faster than computing [n]P on E, where φε is an isomorphism. Finally we calculate (φε([n]φε^-1(P)) = [n]P. Combined with our efficient point tripling formula, this method leads scalar multiplication using double bases to achieve about 23% improvement, compared with Jacobian projective coordinates.