设E是一实的P-一致光滑的Banach空间(1〈P≤2),D是E的非空闭凸子集而且是E的非扩张收缩核.设T:D→E是具有序列{kn}包含[1,∞),limn→∞kn=1的非自渐近非扩张映象,P:E→D是-非扩张保核收缩.本文证明了在一定条件下,由修正的Reich-Takahashi迭代法(1)和(2)式定义的迭代序列{xn}强收敛于非自渐近非扩张映象T的不动点.
Let E be a real p - uniformly smooth Banach space ( 1 〈 p ≤ 2 ), D be a nonempty closed convex subset of E, which is also a nonexpansive retract of E. Let T : D→E is a nonself asymptotically nonexpansive mapping with a sequence { kn } 包含 [ 1, ∞ ), limn→∞kn=1, P : E→D be a nonexpansive retraction. It is shown that under some suitable conditions, the sequence {xn} defined by the modified-Reich- Takahashi iteration method( 1 )and(2)converges strongly to the f'rxed point of nonself asymptotically nonexpansive mapping T.