位置:成果数据库 > 期刊 > 期刊详情页
无词典中英文混合术语抽取及算法研究
  • ISSN号:1000-0135
  • 期刊名称:《情报学报》
  • 时间:0
  • 分类:G[文化科学]
  • 作者机构:[1]大连理工大学系统工程研究所,大连116024
  • 相关基金:国家自然科学基金资助项目(项目编号:70271046).
中文摘要:

中英文混合术语可作为未登录词处理、加权处理和歧义消解等的辅助信息,并有助于提高中文信息处理的质量。依据长度递减与串频统计思想,本文提出了一种中英文混合术语的抽取方法。该方法不需要词典,不需要事先进行语料库的学习,不需要建立字索引,而是依靠统计信息,抽取出支持度大于等于阈值的中英文混合术语。该算法能够有效地抽取出文本中新涌现的通用词、专业术语及专有名词。实验显示该方法不受语料限制,能够快速、准确地进行中英文混合术语的抽取。

英文摘要:

Terms combined with Chinese and English can provide supplement knowledge for the un-login words processing, word weighting and word disambiguation, and can improve the quality of Chinese information processing. This paper presents an algorithm extracting terms combined with Chinese and English based on string length descending and statistics of string frequency. This algorithm can automatically extract terms combined with Chinese and English without thesaurus,without acquiring the probability between words in advance and without character index. This algorithm can effectively extract new universal words, specialized terms and proper nouns.The experimental results show that it can work on arbitrary text and has high speed and accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《情报学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国科学技术情报学会 中国科学技术信息研究所
  • 主编:戴国强
  • 地址:北京复兴路15号
  • 邮编:100038
  • 邮箱:qbxb@istic.ac.cn
  • 电话:010-68598273
  • 国际标准刊号:ISSN:1000-0135
  • 国内统一刊号:ISSN:11-2257/G3
  • 邮发代号:82-153
  • 获奖情况:
  • 1992年全国优秀科技期刊评比二等奖,1997年中国科协优秀科技期刊三等奖,被国外4种检索工具录用
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:19778