根据H^2上的双曲距离在拟共形变换下的拟不变性,给出了K-拟共形抛物循环Fuchs群的收敛指数的估计.
Let F be a parabolic cyclic Fuchsian group acting on H^2, and let φ : R^2 → R^2 be a K-quasiconformal mapping that keeps H^2. We give some estimates about the exponent of convergence of the quasiconformal Fuchsian group G = φτφ^-1.