数控机床故障具有隐蔽性和复杂性的特点,为了快速准确地识别数控机床发生的故障,结合粒子群算法全局搜索能力强、寻优速度快及模糊神经网络容错能力强、自适应性强的特点,提出了将模糊逻辑、RBF神经网络及粒子群算法有机结合的数控机床故障诊断方法。为了改善粒子群算法局部搜索能力,在标准粒子群算法的基础上,改进粒子群的速度更新公式和惯性权重,以此优化模糊神经网络结构参数,从而建立起改进PSO优化模糊神经网络的数控机床主轴伺服系统故障诊断模型。实验和仿真结果表明:与RBF神经网络、标准PSO优化模糊神经网络相比,改进PSO优化模糊神经网络的故障辨识准确性更高、泛化能力更强。