位置:成果数据库 > 期刊 > 期刊详情页
基于改进PSO优化模糊神经网络的数控机床故障诊断技术研究
  • ISSN号:1001-3881
  • 期刊名称:《机床与液压》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]包头职业技术学院,内蒙古包头014010, [2]浙江大学控制科学与工程学系,浙江杭州310000, [3]内蒙古科技大学机械工程学院,内蒙古包头014030
  • 相关基金:国家自然科学基金资助项目(21366017)
中文摘要:

数控机床故障具有隐蔽性和复杂性的特点,为了快速准确地识别数控机床发生的故障,结合粒子群算法全局搜索能力强、寻优速度快及模糊神经网络容错能力强、自适应性强的特点,提出了将模糊逻辑、RBF神经网络及粒子群算法有机结合的数控机床故障诊断方法。为了改善粒子群算法局部搜索能力,在标准粒子群算法的基础上,改进粒子群的速度更新公式和惯性权重,以此优化模糊神经网络结构参数,从而建立起改进PSO优化模糊神经网络的数控机床主轴伺服系统故障诊断模型。实验和仿真结果表明:与RBF神经网络、标准PSO优化模糊神经网络相比,改进PSO优化模糊神经网络的故障辨识准确性更高、泛化能力更强。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机床与液压》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会生产工程分会 广州机械科学研究院
  • 主编:闵新和
  • 地址:广州市黄埔区茅岗路828号
  • 邮编:510700
  • 邮箱:jcy@gmeri.com
  • 电话:020-32387859
  • 国际标准刊号:ISSN:1001-3881
  • 国内统一刊号:ISSN:44-1259/TH
  • 邮发代号:46-40
  • 获奖情况:
  • 2011荣获第四届广东省优秀科技期刊一等奖2010年...
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:28254