位置:成果数据库 > 期刊 > 期刊详情页
基于过完备字典学习的全变分图像去噪方法
  • ISSN号:1007-2373
  • 期刊名称:《河北工业大学学报》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河北工业大学电子信息工程学院,天津300401, [2]天津市电子材料与器件重点实验室,天津300401
  • 相关基金:国家自然科学基金(61203245); 河北省自然科学基金(F2012202027)
中文摘要:

为了改善低信噪比情况下去噪效果、边缘保持能力差的问题,提出一种联合全变分正则项的字典学习图像去噪方法.首先,把增广拉格朗日乘子法和正交匹配追踪这两种求解稀疏编码的方法跟经典的K-SVD思想相交融,改善字典性能;其次,将全变分去噪模型融入到基于字典学习的图像去噪理论中,在图像重构基础上,引入全变分约束项,作为改进去噪模型中新的一项,达到对噪声和图像边缘作后续优化处理、改善图像去噪性能的目的.实验结果表明,改进的去噪方法,在保持原有去噪效果前提下,在噪声标准差较大或者图片边缘信息丰富时,去噪图像更加自然,边缘更加清晰,视觉效果较好.

英文摘要:

In order to improve the low SNR on denoising ability of edge preserving image, proposed K-SVD dictionary learning and total variation regularization denoising method. Firstly, the augmented Lagrange multiplier method and orthogonal method of the two kinds of solving sparse encoding tracking matching with K-SYD classic thoughts to improve the performance of the dictionary; the total variational denoising model into image dictionary learning denoising theory improved image denoising performance. The experimental results show that the improved denoising method, while maintaining the original denoising effect, the noise standard deviation is larger or for the rich image edge information, image denoising is more natural with clearer edge, and the visual effect is better.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河北工业大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:河北省教育厅
  • 主办单位:河北工业大学
  • 主编:郭士杰
  • 地址:天津市北辰区双口镇西平道5340号
  • 邮编:300401
  • 邮箱:xuebao@hebut.edu.cn
  • 电话:022-60438311
  • 国际标准刊号:ISSN:1007-2373
  • 国内统一刊号:ISSN:13-1208/T
  • 邮发代号:
  • 获奖情况:
  • 1999年河北省高校学报“三优”评比优秀学报一等奖,2000年河北省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:6302