采用20L近球形爆炸实验系统对锆粉尘云的爆炸特性开展了实验研究,分别分析了初始点火能量、点火延迟时间、粉尘云浓度3种因素对锆粉尘云爆炸强度的影响,揭示了锆粉尘云在密闭容器中的爆炸特性。在本实验条件下,结果表明:初始点火能量对锆粉尘云最大爆炸压力有显著影响,锆粉尘云最大爆炸压力随初始点火能量的增大而增大;随点火延迟时间的增加,锆粉尘云最大爆炸压力先增大后减小,存在最佳点火延迟时间;随粉尘云浓度的增大,锆粉尘云最大爆炸压力先增大后减小,存在最佳锆粉尘云浓度,得到锆粉尘云的爆炸下限为18~20g/m~3。
A 20-liter nearly-spherical container was employed to examine the influence of initial ignition energy, ignition delay time and zirconium dust concentration on the characteristics of zirconium dust cloud explosion. The experimental results indicate that the maximum explosion pressure of zirconium dust cloud increases as the initial ignition energy increases, however, with the increase of ignition de- lay time, the maximum explosion pressure of the dust cloud increases at first and decreases thereafter. At the same time, there exists an optimal ignition delay time. In addition, with the increase of dust concentration, the maxmum explosion pressure of the dust cloud increases at first and decreases thereafter as well. Finally, there exists an optimal dust concentration, and the lower explosion limit of zirconium dust cloud is 18 to 20 g/m3.