运用Liapunovg二方法讨论了一类四阶非线性系统的全局渐近稳定性,通过构造出较好的Liapunov函数,获得到了其零解全局渐近稳定的充分性准则,去掉了一般要求Liapunov函数具有无穷大这个较强的条件,并推广了部分文献所研究的非线性系统.
In this paper the global asymptotic stability of a class of fourth-order nonlinear systems is studied by using Liapunov's second method. By constructing an appropriate Liapunov function,several sufficient conditions of global asymptotic stability are obtained. The stronger condition that requires the Liapunov function to tend to infinity is removed. This extends some nonlinear systems insome references.