本文研究了一类非线性微分方程的解的增长级的问题.利用亚纯函数的Nevanlinna值分布理论和Wiman-Valiron整函数理论的方法,获得了比以往文献更为精确,更为一般的结论,推广了Gol’dberg,Barsegian,Hayman以及Korhonen等作者的一些结果.
In this paper,we study the problem of growth order of solutions of a type of non-linear general differential equations.By using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron's entire function theory,we obtain a result which is more precise and more general than the previous ones,and extends some results of the growth order of solutions of algebraic differential equations on Gol'dberg,Barsegian,Hayman and Korhonen,etc.