设{Xn;n≥1}为均值为零、方差有限的B值m相依随机变量列.利用B值m相依随机变量列弱收敛定理讨论了{Xn;n≥1}的完全收敛性及重对数律的精确渐进性.若记Sn=n∑(j=1)Xj,1≤P〈2,得到了P{||Sn||≥εn^1/p}的一类加权级数在ε→0时的极限以及,P{||Sn||≥ε√nlog n}的一类加权级数在ε→0时的极限.所得结果是实值i.i.d.随机变量序列完全收敛性及重对数律的精确渐进性质的进一步推广.
Let {Xn;n≥1} zeros and finite variances, random variables, we studi a sequence of m-dependent Banach space valued random variables with mean y using the weak convergence theorem of m-dependent Banach space valued the precise asymptotics of the complete convergence and the law of the iterated logarithm for the sequence {Xn;n≥1}.Set Sn=n∑(j=1)Xj,1≤P〈2,we have the limits of a weighed infinite series of P{||Sn||≥εn^1/p} as ε→0 and the limits of a kind of weighed infinite series of P{||Sn||≥ε√nlog n} as ε→0 We extended the results of the precise asymptotics of the complete convergence and the law of the iterated logarithm for real valued i. i. d. random variables.