白藜芦醇是一种极具药用价值的植物源芪类化合物.为了在E.coli实现白藜芦醇的从头合成,构建了由酪氨酸解氨酶(TAL),香豆酸-CoA合成酶(4CL)和白藜芦醇合成酶(STS)组成的非天然合成途径.经3天发酵后,白藜芦醇产量仅为2.67 mg/L,而其中间体香豆酸的积累达到了95.64 mg/L.为了进一步改善异源途径的效率,对4CL和STS模块采取融合表达、高拷贝表达及启动子工程改造的策略,最终使白藜芦醇产量提高到了9.6倍,达到了25.76 mg/L,同时香豆酸的积累减少到了20.38 mg/L.这些研究结果为更高效白藜芦醇从头合成工程菌的构建及最终实现白藜芦醇的微生物大规模生产奠定了基础.
Resveratrol is an important plant stilbene with considerable pharmaceutical values. To achieve the de novo biosynthesis of resveratrol in E. coli, a heterologous resveratrol biosynthetic pathway consisting of tyrosine ammonia lyase (TAL), coumaroyl-CoA synthase (4CL) and stilbene synthase (STS) was constructed. The engineered strain only produced 2.67 mg/L resveratrol after 3 clays cultivation. To improve the efficiency of heterologous pathway, the 4CL and STS modules were further engineered using strategies of fusion expression, high-copy expression and promoter engineering. Eventually, the yield of resveratrol reached 25.76 mg/L with a 9.6-fold improvement compared with the initial strain. The useful information for the construction of more efficient recombinant resveratrol producer was provided, and it laid a foundation for the large-scale production of resveratrol through microbial fermentation.