由量添加剂规则 F 的机械分析<潜水艇class=“ a-plus-plus ”> [F <潜水艇class=“ a-plus-plus ”> [f]]=F <潜水艇class=“ a-plus-plus ”>哪个的+[f],部分 Fourier 转变( FrFT ) F <潜水艇class=“ a-plus-plus ”>[f]应该满足,我们表明相互转变的操作员是的位置动量为构造 FrFT 的集成内核的核心元素。基于这观察并且二互相结合纠缠状态的代表,我们然后为启用复杂部分 Fourier 转变(CFrFT ) 导出一个核心操作员,它也服从添加剂规则。以一种类似的方式,我们也为夫累X尔操作员的一种类型揭示部分转变性质。
By a quantum mechanical analysis of the additive rule Fa [Fβ[f]] = Fα+β[f], which the fractional Fourier transformation (FrFT) Fα [f] should satisfy, we reveal that the position-momentum mutual- transformation operator is the core element for constructing the integration kernel of FrFT. Based on this observation and the two mutually conjugate entangled-state representations, we then derive a core operator for enabling a complex fractional Fourier transformation (CFrFT), which also obeys the additive rule. In a similar manner, we also reveal the fractional transformation property for a type of Fresnel operator.