位置:成果数据库 > 期刊 > 期刊详情页
基于模糊神经网络的薄板不同指标裂纹诊断
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TH165.3[机械工程—机械制造及自动化] TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海交通大学振动、冲击、噪声国家重点实验室,上海200240, [2]大连理工大学船舶工程系,大连116023
  • 相关基金:科技部国际科技合作重点项目(2005DFA00110),国家自然科学基金委海外青年学者合作研究基金和国家自然科学基金(50335030)资助项目.
中文摘要:

将采用模糊神经网络的故障诊断技术和诊断模型,利用改进的BP算法对模糊神经网络进行训练,并利用训练好的网络,对悬臂薄铝板仿真裂纹进行了诊断。对悬臂薄铝板裂纹的诊断方法是;首先得到完好板结构和各种仿真裂纹板结构的振型和固有频率,在此基础上提取各种裂纹损伤情况下的五种裂纹诊断指标。将五种诊断指标分成三组,构成三个模糊神经网络,对模糊神经网络进行训练之后,利用训练好的网络对悬臂铝板裂纹进行了故障诊断,将裂纹的诊断结果与实际情况进行了比较,得到了不同诊断指标组合下,不同神经网络的诊断结果。并对不同组别裂纹诊断指标的诊断结果与实际裂纹情况进行了比较。

英文摘要:

Fuzzy neural networks fault diagnosis technology and diagnosis mode are used to diagnose cracks. The fuzzy neural networks are trained with promoted BP arithmetic. The faults of cracked cantilever plate are diagnosed using the trained fuzzy neural networks. Firstly the mode and frequency of numerical simulation intact plate and different cracked plates are calculated. Then five crack diagnosis indexes are calculated. Divide five indexes into three groups and create three fuzzy neural networks. The fuzzy neural networks are trained using these indexes, and diagnosis is taken to the crack in the end. Compared the diagnosis result with the actual crack and an effective result is gotten.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603