位置:成果数据库 > 期刊 > 期刊详情页
协同过滤中一种有效的最近邻选择方法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]过程优化与智能决策教育部重点实验室,合肥230009, [3]上海电力学院经济与管理学院,上海201300
  • 相关基金:国家自然科学基金(No.71271072,71201145)、高等学校博士学科点专项科研基金(No.20110111110006)、教育部人文社会科学研究基金(No.09YJC630055,11YJC630283)资助项目
中文摘要:

协同过滤中的评分数据稀疏性使得最近邻搜寻不够准确,导致推荐质量较差.基于此,文中提出一种有效的针对稀疏评分的最近邻选择方法——两阶段最近邻选择算法(TPNS).TPNS分为两个步骤,首先计算用户间的近邻倾向性,选择近邻倾向性较高的用户组成初始近邻集合;然后根据初始近邻集合计算目标用户与其他用户间的等价关系相似性,使用等价关系相似性对目标用户的初始近邻集合进行修正,得到最近邻集合.在MovieLens数据集上对比常用的推荐算法,实验结果表明文中方法在协同过滤推荐的应用中具有更高的准确性.

英文摘要:

In collaborative filtering, sparsity in ratings resuhing in poor recommendations. To address this makes inaccurate neighborhood formation, thereby issue, a method of neighborhood formation, two-phase neighbor selection method (TPNS), is proposed. The definition of neighbor tendency is given. Based on the neighbor tendency, the preliminary neighborhood is formed. Then, the equivalence relation similarity is applied to modify the preliminary neighborhood, which makes the neighborhood formation more accurate. Experimental results on MovieLens dataset show that compared with the existing algorithms, TPNS performs better in the application of personalized recommendation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169