The characteristics of compound particle multiplicity distribution and multiplicity correlations between the compound particle and the grey particle, black particle, shower particle and heavily ionized track particle are investigated in this paper. It is found that the average multiplicities of the grey particle, black particle, shower particle and heavily ionized track particle increase with an increase in the number of compound particles, which can be explained by the impact geometrical model. The compound multiplicity distribution is observed to obey a Koba-Nielson-Olesen (KNO) type of scaling law.
The characteristics of compound particle multiplicity distribution and multiplicity correlations between the compound particle and the grey particle, black particle, shower particle and heavily ionized track particle are investigated in this paper. It is found that the average multiplicities of the grey particle, black particle, shower particle and heavily ionized track particle increase with an increase in the number of compound particles, which can be explained by the impact geometrical model. The compound multiplicity distribution is observed to obey a Koba-Nielson-Olesen (KNO) type of scaling law.