位置:成果数据库 > 期刊 > 期刊详情页
一种基于连续属性离散化的知识分类方法
  • ISSN号:1000-1832
  • 期刊名称:《东北师大学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林师范大学计算机学院,吉林四平136000, [2]长春师范学院计算机科学与技术学院,吉林长春130032, [3]东北师范大学计算机科学与信息技术学院,吉林长春130117
  • 相关基金:国家自然科学基金资助项目(60673099 60873146); 吉林省科技发展计划项目(201105056); 吉林省教育厅科技计划基金资助项目(2007172 2010383); 长春师范学院校内青年基金资助项目(010 012)
中文摘要:

提出一种基于连续属性离散化的知识分类方法.将条件属性按照重要度由高到低排序,并依照此排序将决策表中各条件属性依次离散化.在对决策表中条件属性的离散化过程中充分考虑已离散化的条件属性及决策属性,离散后的决策表不需要进一步约简.使用了模拟数据和UCI机器学习数据集中的数据进行算法测试,而且与其他离散化算法进行了对比,结果充分证明了新方法的有效性.

英文摘要:

This paper gives a new method of classification based on discretization of continuous attributes.Firstly condition attributes are sorted in descending order by their significance,and then each condition attribute in the decision table is discretized in sequence by the order.Both discretized condition attributes and decision attributes are paid more attention during the course of discretization.And the discretized decision table needs not to be reduced further.Finally,the simulation data and the UCI machine learning data are used to verify the new method,and the new method is compared with other discretization algorithms.The results fully show the correctness and effectiveness of the proposed method of classification based on discretization of continuous attributes.

同期刊论文项目
期刊论文 39 会议论文 7
同项目期刊论文
期刊信息
  • 《东北师大学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:东北师范大学
  • 主编:刘宝
  • 地址:长春市净月大街2555号
  • 邮编:130117
  • 邮箱:dslkxb@nenu.edu.cn
  • 电话:0431-89165992
  • 国际标准刊号:ISSN:1000-1832
  • 国内统一刊号:ISSN:22-1123/N
  • 邮发代号:12-43
  • 获奖情况:
  • 中文综合性科学技术类核心期刊,中国科学引文数据库来源期刊,中国科技论文统计源期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7830