采用共沉淀法制备了不同Eu3+掺杂浓度的Gd2W2O9和Gd2(WO4)3纳米发光材料.通过对纳米材料样品的X射线衍射谱(XRD)和场发射扫描电镜(FE-SEM)照片的观察和分析,对样品的结构和形貌进行了表征.测量了各样品的发射光谱、激发光谱,计算了各样品的部分J-O参数和Eu^3+5D0能级量子效率,绘制了不同基质中Eu3+发光的浓度猝灭曲线,对Eu^3+掺杂的Gd2W2O9和Gd2(WO4)3纳米发光材料的光致发光性质进行了研究.实验结果证明,与较常见的Gd2(WO4)3:Eu一样,Gd2W2O9:Eu中Eu^3+5D0→7F2跃迁的红色发光也能被395nm和465nm激发光有效激发,具有近紫外(蓝光)相对激发效率高,猝灭浓度大的优点,有潜力成为高效的近紫外(蓝光)激发白光LED用红色荧光粉材料.
Eu^3+ doped Gd2W2O9 and Gd2 ( WO4 )3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy ( FE-SEM). The emission spectra and excitation spectra of the samples were measured,the J-O parameters and the quantum efficiencies of the 5D0 level of Eu^3+ of the samples were calculated,and the concentration quenching curves of Eu^3+ luminescence in different hosts were given. The study results indicate that similar to the Gd2(WO4)3:Eu,the red emission of Eu^3+ 5D0→ 7F2 transition in Gd2W2O9:Eu can also be effectively excited by 395 nm near-UV light and 465 nm blue light. So the Gd2W2O9:Eu red phosphors may have a potential application for white light emitting diodes.