位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量回归机的水文混沌时间序列预测
  • ISSN号:1000-0984
  • 期刊名称:《数学的实践与认识》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]河海大学水利经济研究所,江苏南京211100
  • 相关基金:教育部人文社科规划基金(10YJA790080);国家社科基金一般项目(11BGL088)
作者: 姜翔程[1]
中文摘要:

支持向量机在系统辨识和分类研究方面比较成熟,目前尚没有提出有效的支持向量回归理论来解决非线性、时变、干扰的复杂问题.支持向量回归机主要用于因果关系点对的回归预测,把支持向量回归机应用于水文混沌时间序列的预测研究是一个有意义的工作.在支持向量机一般理论基础上,提出了水文混沌时间序列支持向量回归机模型,并就模型进行仿真计算,讨论了模型参数对支持向量回9-5机预测精度的影响,为模型参数寻优提供一般指导原则.直门达水文站径流量混沌时间序列支持向量回归机预测实验表明,水文混沌时间序列支持向量回归机模型是有效的.

英文摘要:

At present the support vector machine is mature in the system identification and the classified research, still had not proposed the support vector regression theory to solve complex system with non-linear, time-variable and disturbance. The support vector regression machine mainly uses to forecast relationship between cause and effect. According to the support vector machine theory, proposes a support vector regression model to hydro- logic chaotic time series prediction, discusses to the influence of parameters on the model precision with simulation for guiding to choose the model parameters. The application of monthly runoff of Zhimenda indicates that the support vector regression model can deal with the complicated hydrologic data array well, and there is the good prediction precision.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学的实践与认识》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:林群
  • 地址:北京大学数学科学学院
  • 邮编:100871
  • 邮箱:bjmath@math.pku.edu.cn
  • 电话:010-62759981
  • 国际标准刊号:ISSN:1000-0984
  • 国内统一刊号:ISSN:11-2018/O1
  • 邮发代号:2-809
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22973