位置:成果数据库 > 期刊 > 期刊详情页
UIDK-means:多维不确定性测量数据聚类算法
  • ISSN号:0254-3087
  • 期刊名称:《仪器仪表学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学自动化测试与控制研究所,哈尔滨150080
  • 相关基金:教育部高等学校博士学科点专项科研基金(20092302110013);教育部新世纪优秀人才支持计划(NCET-10-0062)资助项目
中文摘要:

在网络化测试测量信息体系的不确定性测量数据聚类方法研究中,普遍假定测量数据的概率密度函数或者概率分布函数等信息是已知的,这与实际应用系统中这些信息难以获取的情况是相悖的,鉴于此,利用区间数的方法,结合测量数据的统计值来合理地表示多维不确定性测试测量数据,并采用低计算复杂度的不确定性数据距离计算方法,提出一种基于区间数的多维不确定性数据聚类方法——UIDK-means。实验结果表明,该方法具有较高的聚类精度和较低的计算复杂度。

英文摘要:

In uncertain measurement data clustering methods for networked measurement and test information system,most methods assume the probability density function or probability distribution function of the measurement data is known,which is in contradiction with the issue that this information is rarely available.So in this paper,interval data combined with statistic information is used to express multi-dimensional uncertain measurement data reasonably,a new uncertain distance computing method is proposed to measure the similarity of different uncertain data.And a new uncertain multi-dimension data clustering algorithm—UIDK-means based on the interval data is proposed and applied to uncertain measurement data.Experiment results show that the uncertain clustering algorithm can obtain better clustering precision with low computing complexity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《仪器仪表学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国仪器仪表学会
  • 主编:张钟华
  • 地址:北京东城区北河沿大街79号
  • 邮编:100009
  • 邮箱:yqyb@vip.163.com
  • 电话:010-84050563
  • 国际标准刊号:ISSN:0254-3087
  • 国内统一刊号:ISSN:11-2179/TH
  • 邮发代号:2-369
  • 获奖情况:
  • 1983年评为机械部科技进步三等奖,1997年评为中国科协优秀科技期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:42481