Colloidal zinc oxide(ZnO) nanocrystals generated from the high temperature and nonaqueous approache are attractive for use in solution-processed electrical and optoelectronic devices. However, the asprepared colloidal ZnO nanocrystals by this approach are generally capped by ligands with long alkyl-chains,which is disadvantage for solution-processed devices due to hindering charge transport. Here we demonstrate an effective ligand exchange process for the colloidal ZnO nanocrystals from the high temperature and nonaqueous approach by using n-butylamine. The ligand exchange process was carefully characterized. The thin films based on colloidal ZnO nanocrystals after ligand exchange exhibited dramatically enhanced UV photoconductivity.
Colloidal zinc oxide (ZnO) nanocrystals generated from the high temperature and nonaqueous approache are attractive for use in solution-processed electrical and optoelectronic devices. However, the as-prepared colloidal ZnO nanocrystals by this approach are generally capped by ligands with long alkyl-chains, which is disadvantage for solution-processed devices due to hindering charge transport. Here we demonstrate an effective ligand exchange process for the colloidal ZnO nanocrystals from the high temperature and nonaqueous approach by using n-butylamine. The ligand exchange process was carefully characterized. The thin films based on colloidal ZnO nanocrystals after ligand exchange exhibited dramatically enhanced UV photoconductivity.