基于Banach代数动力系统,提出了诱导Banach代数的定义,证明了Banach代数的不可约有界表示蕴含着诱导Banach代数的不可约有界表示,最后探讨了连续函数空间稠密子代数的结构特征。
Based on Banach algebra dynamical system, the notion of induced Banach algebra is given. We show that if the representation of given Banach algebra is irreducible bounded, then the representation of the associated induced Banach algebra is also irreducible bounded. We study the structure of a dense subalgebra of continuous function space.