位置:成果数据库 > 期刊 > 期刊详情页
一种面向对象的多角色蚁群算法及其TSP问题求解
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京理工大学计算机科学与工程学院,南京210094
  • 相关基金:国家自然科学基金项目(91220301,61371040); 高等学校学科创新引智计划课题(B13022)
中文摘要:

蚁群算法的改进大多从算法本身入手或与其他算法相结合,未充分利用待解决问题所包含的信息,提升效果较为有限.对此,提出一种面向对象的多角色蚁群算法.该算法充分利用旅行商问题(TSP)对象的空间信息,采用k-均值聚类将城市划分为不同类别;同时,对蚁群进行角色划分,不同角色的蚁群针对城市类别关系执行各自不同的搜索策略,增强了蚁群的搜索能力,较大幅度地提高了求解质量.每进行一次迭代,仅各角色最优个体进行信息素更新,防止算法退化为随机的贪婪搜索.将精英策略与跳出局部最优相结合可避免算法的停滞.50个经典TSP实例仿真实验表明:所提出的算法可以在较少的迭代次数内获得或非常接近于问题的已知最优解;对于大规模TSP问题所得结果也远超所对比的算法.

英文摘要:

Most of the improvements on the ant colony algorithm are based on the algorithm itself or combined with other algorithms, which underutilizes information of the problems to be solved, so the effect is not ideal. An object-oriented multi-role ant colony optimization(OMACO) algorithm is proposed to deal with the characteristics of traveling salesman problem(TSP) on the basis of k-means, which divides the cities into different categories with full use of the TSP spatial information and divides the colony into different roles. Each role solves the problem independently according to their respective strategies, which enhances the algorithm's search capability and improves the quality of solution. After each iteration, only the optimal solution of each role is applied to update the pheromone, which prevents premature convergence. The elitist strategy combined with local optima jumping is used again to the stagnation of the algorithm. Many experiments of 50 classic TSP instances show that the OMACO algorithm can obtain the known optimal solution in fewer iterations. For large-scale TSP instances, the proposed algorithm is also far better than the comparison algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961