基于Sprott系统提出一个新的恒李雅普诺夫指数谱的三维混沌系统,系统含有4个参数和平方非线性项。通过对Lya-punov指数、Lyapunov维数、Poincare截面、功率谱、分叉图、和LE谱的理论分析和数值计算,研究了新系统的基本动力学特性。分析了参数的变化对新系统的动力学行为的影响,可知第一维状态参数变化时,系统的Lyapunov指数谱保持恒定且具有调幅、倒相特性,通过设计单个控制器,实现主从系统的同步控制。利用Multisim软件对新系统的实现以及同步控制进行硬件电路仿真,仿真结果与数值一致,证实了该系统的可实现性。
A new chaotic system is proposed based on Sprott system,which contains four parameters and a square nonlinear term. The dynamic properties of this new chaotic system arestudied via theoretical analysis andnumerical calculation of Lyapunov expo-nents,Lyapunov dimension,Poincare section,power spectrum,LE spectrum and bifurcation diagram.The influence on dynamic behavior caused by the change of parameters is analyzed.It is noted that when the parameter of first-dimensional state varies,the Lyapunov exponent spectrum can keep invariable,and the amplitude modulation and phase control can also berealized.In this framework,the drive system and response system may be completely synchronized by only using a single controller.Finally,the circuit of this new system is designed and realized via Multisim software,which illustrates the realizability of synchronization.