令μ是R~d上可能为非倍的正的Radon测度.对于所有的x∈R~d,r〉0以及某个固定的常数C_0,μ只需满足μ(B(x,r))≤C_0r~n(0〈n≤d).本文定义了带有非倍测度的Littlewood-Paley函数的多线性交换子g_(λ,μ,b,m)~*(f)(x)=g_(λ,μ)~*([b(x)-b(·)]~mf)(x),其中x∈R~d,并主要研究了它在非倍测度下的端点估计.这些估计可以认为是相关经典结果的更一般化推广.
Letμbe a positive Radon measureμon R~d which may be non-doubling.The only condition thatμisμ(B(x,2r))≤C_0μ(B(x,r))for all x∈R~d,r0 and somefixed constant C_0.In this paper,the authors define Littlewood-Paley's g_(λ,b,m)~* functionas follows:g_(λ,b,m)~*(x)=g_λ~*([b(x)—b(·)]~mf)(x),x∈R~d,and mainly studied its endpointestimates when they are related to non-doubling measureμ.These estimates can beconsidered as extensions of related classical results.