位置:成果数据库 > 期刊 > 期刊详情页
求解背包问题的病毒协同进化粒子群算法
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:中国高技术研究发展计划重大资助项目(2006AA01A103).
中文摘要:

为提高粒子群算法的搜索性能,提出一种基于病毒进化理论的改进离散粒子群算法:病毒协同进化粒子群算法.在粒子群中引入生物病毒机制和宿主与病毒基于感染操作的思想,病毒采用与粒子等长的编码方式,执行反向代换、结合等操作,利用病毒的水平感染和垂直传播能力较好地维持个体的多样性和对解空间的局部搜索能力.通过解决背包问题对算法进行验证,仿真表明所提算法搜索性能优于遗传算法、模拟退火及标准粒子群等其他算法.该算法能有效求解背包问题等NP难题.

英文摘要:

To improve the search capability of particle swarm algorithm, an improved discrete particle swarm optimization algorithm based on virus evolution theory is proposed and named as virus-evolutionary discrete particle swarm optimization (VEPSO) algorithm. Biological virus mechanism and the infection-based operation between host and virus are introduced in the particle swarm. Virus individual is coded with the same length as particle, and it executes infection and incorporation operations. The horizontal infection and vertical propagation of virus are fully used to maintain the individual diversity and local search capability in solution space. This algorithm is verified by solving knapsack problem. Simulation results show that the search capability of VEPSO algorithm is better than that of genetic algorithm, simulated annealing and standard PSO algorithm. This algorithm is able to effectively solve knapsack and other NP-hard problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329